Monday 24 February 2020
Tuesday 31 December 2019
SQL Query Table Name with Rows Counts
SELECT
TableName = t.NAME,
TableSchema = s.Name,
RowCounts = p.rows
FROM
sys.tables t
INNER JOIN
sys.schemas s ON t.schema_id = s.schema_id
INNER JOIN
sys.indexes i ON t.OBJECT_ID = i.object_id
INNER JOIN
sys.partitions p ON i.object_id = p.OBJECT_ID AND i.index_id = p.index_id
WHERE
t.is_ms_shipped = 0
GROUP BY
t.NAME, s.Name, p.Rows
ORDER BY
s.Name, t.Name
Monday 16 December 2019
SQL Performance Report Queries
--Query 1: logical reads
SELECT TOP 10 SUBSTRING(qt.TEXT, (qs.statement_start_offset/2)+1,
((CASE qs.statement_end_offset
WHEN -1 THEN DATALENGTH(qt.TEXT)
ELSE qs.statement_end_offset
END - qs.statement_start_offset)/2)+1),
qs.execution_count,
qs.total_logical_reads, qs.last_logical_reads,
qs.total_logical_writes, qs.last_logical_writes,
qs.total_worker_time,
qs.last_worker_time,
qs.total_elapsed_time/1000000 total_elapsed_time_in_S,
qs.last_elapsed_time/1000000 last_elapsed_time_in_S,
qs.last_execution_time,
qp.query_plan
FROM sys.dm_exec_query_stats
qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
ORDER BY qs.total_logical_reads DESC
-- logical reads
--Query 2: logical writes
SELECT TOP 10 SUBSTRING(qt.TEXT, (qs.statement_start_offset/2)+1,
((CASE qs.statement_end_offset
WHEN -1 THEN DATALENGTH(qt.TEXT)
ELSE qs.statement_end_offset
END - qs.statement_start_offset)/2)+1),
qs.execution_count,
qs.total_logical_reads, qs.last_logical_reads,
qs.total_logical_writes, qs.last_logical_writes,
qs.total_worker_time,
qs.last_worker_time,
qs.total_elapsed_time/1000000 total_elapsed_time_in_S,
qs.last_elapsed_time/1000000 last_elapsed_time_in_S,
qs.last_execution_time,
qp.query_plan
FROM sys.dm_exec_query_stats
qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
ORDER BY qs.total_logical_writes DESC
-- logical writes
--Query 3: CPU time
SELECT TOP 10 SUBSTRING(qt.TEXT, (qs.statement_start_offset/2)+1,
((CASE qs.statement_end_offset
WHEN -1 THEN DATALENGTH(qt.TEXT)
ELSE qs.statement_end_offset
END - qs.statement_start_offset)/2)+1),
qs.execution_count,
qs.total_logical_reads, qs.last_logical_reads,
qs.total_logical_writes, qs.last_logical_writes,
qs.total_worker_time,
qs.last_worker_time,
qs.total_elapsed_time/1000000 total_elapsed_time_in_S,
qs.last_elapsed_time/1000000 last_elapsed_time_in_S,
qs.last_execution_time,
qp.query_plan
FROM sys.dm_exec_query_stats
qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
ORDER BY qs.total_worker_time DESC
-- CPU time
--Query 4: Missing Index
SELECT
dm_mid.database_id AS DatabaseID,
dm_migs.avg_user_impact*(dm_migs.user_seeks+dm_migs.user_scans) Avg_Estimated_Impact,
dm_migs.last_user_seek AS Last_User_Seek,
OBJECT_NAME(dm_mid.OBJECT_ID,dm_mid.database_id) AS [TableName],
'CREATE INDEX [IX_' +
OBJECT_NAME(dm_mid.OBJECT_ID,dm_mid.database_id) + '_'
+ REPLACE(REPLACE(REPLACE(ISNULL(dm_mid.equality_columns,''),', ','_'),'[',''),']','')
+ CASE
WHEN dm_mid.equality_columns IS NOT NULL
AND dm_mid.inequality_columns
IS NOT NULL THEN '_'
ELSE ''
END
+ REPLACE(REPLACE(REPLACE(ISNULL(dm_mid.inequality_columns,''),', ','_'),'[',''),']','')
+ ']'
+ ' ON ' + dm_mid.statement
+ ' (' + ISNULL (dm_mid.equality_columns,'')
+ CASE WHEN dm_mid.equality_columns
IS NOT NULL AND dm_mid.inequality_columns
IS NOT NULL THEN ',' ELSE
'' END
+ ISNULL (dm_mid.inequality_columns, '')
+ ')'
+ ISNULL (' INCLUDE (' + dm_mid.included_columns + ')', '') AS Create_Statement
FROM sys.dm_db_missing_index_groups
dm_mig
INNER JOIN sys.dm_db_missing_index_group_stats dm_migs
ON dm_migs.group_handle = dm_mig.index_group_handle
INNER JOIN sys.dm_db_missing_index_details dm_mid
ON dm_mig.index_handle = dm_mid.index_handle
WHERE dm_mid.database_ID = DB_ID()
ORDER BY Avg_Estimated_Impact DESC
GO
--Query 5: Query Time Execution
SELECT
qs.total_elapsed_time
/ qs.execution_count
/ 1000000.0 AS
average_seconds,
qs.total_elapsed_time
/ 1000000.0 AS
total_seconds,
qs.execution_count,
SUBSTRING (qt.text,qs.statement_start_offset/2,
(CASE WHEN
qs.statement_end_offset = -1
THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
ELSE qs.statement_end_offset
END - qs.statement_start_offset)/2) AS individual_query,
o.name
AS object_name,
DB_NAME(qt.dbid) AS database_name
FROM sys.dm_exec_query_stats
qs
CROSS
APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
LEFT
OUTER JOIN sys.objects o ON qt.objectid = o.object_id
WHERE qt.dbid = DB_ID()
ORDER BY average_seconds DESC;
----------Query 6: AvgIo
SELECT
creation_time
, last_execution_time
, total_logical_reads AS
[LogicalReads] , total_logical_writes AS [LogicalWrites] ,
execution_count
, total_logical_reads+total_logical_writes
AS [AggIO] , (total_logical_reads+total_logical_writes)/(execution_count+0.0) AS [AvgIO] , st.TEXT
, DB_NAME(st.dbid) AS database_name
, st.objectid AS OBJECT_ID
FROM sys.dm_exec_query_stats
qs
CROSS APPLY sys.dm_exec_sql_text(sql_handle) st
WHERE total_logical_reads+total_logical_writes
> 0
AND sql_handle IS NOT NULL
ORDER BY [AggIO] DESCFriday 19 July 2019
Bulk SMS Sender ID Codes
Bulk SMS Sender ID Codes
Following table is of Telecom Operator Code.
|
Following is the table of Regional Code.
|
Tuesday 18 June 2019
Excel read, Two days different in Python
Program:
import pandas as pd
df = pd.read_excel('CompleteData2.xlsx', sheet_name='Test')
df.DOA = pd.to_datetime(df['DOA']).dt.normalize()
df.DOD = pd.to_datetime(df['DOD']).dt.normalize()
df['Length_of_stay'] = ((df['DOD'] - df['DOA'])).dt.days
f = df.loc[:,['Length_of_stay']]
mode = f.mode(axis=0)
print(mode, 'Mode of Length_of_stay')
mean = f.mean(axis=0)
print(mean, 'Mean of Length_of_stay')
output:
import pandas as pd
df = pd.read_excel('CompleteData2.xlsx', sheet_name='Test')
df.DOA = pd.to_datetime(df['DOA']).dt.normalize()
df.DOD = pd.to_datetime(df['DOD']).dt.normalize()
df['Length_of_stay'] = ((df['DOD'] - df['DOA'])).dt.days
f = df.loc[:,['Length_of_stay']]
mode = f.mode(axis=0)
print(mode, 'Mode of Length_of_stay')
mean = f.mean(axis=0)
print(mean, 'Mean of Length_of_stay')
output:
Saturday 1 June 2019
View a List of Databases on an Instance of SQL Server
Query 1:
SELECT name, database_id, create_date FROM sys.databases ;
If u need only the User-defined databases;
Query 1: select * from sys.databases WHERE name NOT IN ('master', 'tempdb', 'model', 'msdb');
Query 2: SELECT name,filename ,sid FROM dbo.sysdatabases WHERE dbid > 4
SELECT name, database_id, create_date FROM sys.databases ;
If u need only the User-defined databases;
Query 1: select * from sys.databases WHERE name NOT IN ('master', 'tempdb', 'model', 'msdb');
Query 2: SELECT name,filename ,sid FROM dbo.sysdatabases WHERE dbid > 4
Thursday 16 May 2019
Top 10 Web Application Security Risks
Injection
Injection flaws, such as SQL injection, LDAP injection, and CRLF injection, occur when an attacker sends untrusted data to an interpreter that is executed as a command without proper authorization.
* Application security testing can easily detect injection flaws. Developers should use parameterized queries when coding to prevent injection flaws.
Broken Authentication and Session Management
Incorrectly configured user and session authentication could allow attackers to compromise passwords, keys, or session tokens, or take control of users’ accounts to assume their identities.
* Multi-factor authentication, such as FIDO or dedicated apps, reduce the risk of compromised accounts.
Sensitive Data Exposure
Applications and APIs that don’t properly protect sensitive data such as financial data, usernames and passwords, or health information, could enable attackers to access such information to commit fraud or steal identities.
* Encryption of data at rest and in transit can help you comply with data protection regulations.
XML External Entity
Poorly configured XML processors evaluate external entity references within XML documents. Attackers can use external entities for attacks including remote code execution, and to disclose internal files and SMB file shares.
Broken Access Control
Improperly configured or missing restrictions on authenticated users allow them to access unauthorized functionality or data, such as accessing other users’ accounts, viewing sensitive documents, and modifying data and access rights.
Security Misconfiguration
This risk refers to improper implementation of controls intended to keep application data safe, such as misconfiguration of security headers, error messages containing sensitive information (information leakage), and not patching or upgrading systems, frameworks, and components.
Cross-Site Scripting
Cross-site scripting (XSS) flaws give attackers the capability to inject client-side scripts into the application, for example, to redirect users to malicious websites.
Insecure deserialization
Insecure deserialization flaws can enable an attacker to execute code in the application remotely, tamper or delete serialized (written to disk) objects, conduct injection attacks, and elevate privileges.
Using Components with Known Vulnerabilities
Developers frequently don’t know which open source and third-party components are in their applications, making it difficult to update components when new vulnerabilities are discovered. Attackers can exploit an insecure component to take over the server or steal sensitive data.
Insufficient Logging and Monitoring
The time to detect a breach is frequently measured in weeks or months. Insufficient logging and ineffective integration with security incident response systems allow attackers to pivot to other systems and maintain persistent threats.
Subscribe to:
Posts (Atom)
Upload valid file in C#
protected bool CheckFileExtandLength(HttpPostedFile HtmlDocFile) { try { Dictionary<string, byte[]>...
-
CREATE TAblE #temp ( T_Name VARCHAR(50), T_Times BIGINT ) INSERT INTO #temp(T_Name,T_Times) VALUES ('ASHISH',4) IN...
-
Step 1: Open URL: https://portal.azure.com/#home Step2 : Click Manage Azure Active Director Step3: Click Enterprise Application Step 4: Ne...
-
Injection Injection flaws, such as SQL injection, LDAP injection, and CRLF injection, occur when an attacker sends untrusted data to an ...